Body-centred tetragonal (BCT)#
Pearson symbol: tI
Constructor: BCT()
It is defined by two parameters \(a\) and \(c\) with \(a \ne c\). Standardized primitive and conventional cells in the default orientation are
Transformation matrix from standardized primitive cell to standardized conventional cell is
K-path#
BCT1#
\(\mathrm{\Gamma-X-M-\Gamma-Z-P-N-Z_1-M\vert X-P}\)
Point |
\(\times\boldsymbol{b}_1^s\) |
\(\times\boldsymbol{b}_2^s\) |
\(\times\boldsymbol{b}_3^s\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{M}\) |
\(-1/2\) |
\(1/2\) |
\(1/2\) |
\(\mathrm{N}\) |
\(0\) |
\(1/2\) |
\(0\) |
\(\mathrm{P}\) |
\(1/4\) |
\(1/4\) |
\(1/4\) |
\(\mathrm{X}\) |
\(0\) |
\(0\) |
\(1/2\) |
\(\mathrm{Z}\) |
\(\eta\) |
\(\eta\) |
\(-\eta\) |
\(\mathrm{Z}_1\) |
\(-\eta\) |
\(1-\eta\) |
\(\eta\) |
BCT2#
\(\mathrm{\Gamma-X-Y-\Sigma-\Gamma-Z-\Sigma_1-N-P-Y_1-Z\vert X-P}\)
Point |
\(\times\boldsymbol{b}_1^s\) |
\(\times\boldsymbol{b}_2^s\) |
\(\times\boldsymbol{b}_3^s\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{N}\) |
\(0\) |
\(1/2\) |
\(0\) |
\(\mathrm{P}\) |
\(1/4\) |
\(1/4\) |
\(1/4\) |
\(\mathrm{\Sigma}\) |
\(-\eta\) |
\(\eta\) |
\(\eta\) |
\(\mathrm{\Sigma_1}\) |
\(\eta\) |
\(1-\eta\) |
\(-\eta\) |
\(\mathrm{X}\) |
\(0\) |
\(0\) |
\(1/2\) |
\(\mathrm{Y}\) |
\(-\zeta\) |
\(\zeta\) |
\(1/2\) |
\(\mathrm{Y}_1\) |
\(1/2\) |
\(1/2\) |
\(-\zeta\) |
\(\mathrm{Z}\) |
\(1/2\) |
\(1/2\) |
\(-1/2\) |
Variations#
There are two variations of body-centered tetragonal lattice.
BCT1#
\(c < a\).
Predefined example: bct1
with \(a = 1.5\pi\) and \(c = \pi\).
BCT2#
\(c > a\).
Predefined example: bct2
with \(a = \pi\) and \(c = 1.5\pi\).
Examples#
BCT1#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("BCT1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("bct1_reciprocal.png")
# Interactive plot:
backend.show()
Primitive, Wigner-Seitz and conventional cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("BCT1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("bct1_real.png")
# Interactive plot:
backend.show()
BCT2#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("BCT2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("bct2_reciprocal.png")
# Interactive plot:
backend.show()
Primitive, Wigner-Seitz and conventional cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("BCT2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("bct2_real.png")
# Interactive plot:
backend.show()
Cell standardization#
Condition \(a \ne c\) result in the condition \(\alpha^s = \beta^s \ne \gamma^s\) for the primitive cell in a standard form. Therefore, wulfric uses angles of the primitive cell for standardization.
If \(\alpha = \beta \ne \gamma\) then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]If \(\beta = \gamma \ne \alpha\) then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]If \(\alpha = \gamma \ne \beta\) then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
Edge cases#
If \(a = c\) then the lattice is Body-centered cubic (BCC).