Cubic (CUB)#
Pearson symbol: cP
Constructor: CUB()
It is defined by one parameter \(a\). Standardized primitive and conventional cells in the default orientation are
\[\begin{split}\begin{matrix}
\boldsymbol{a}_1^s &=& \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\
\boldsymbol{a}_2^s &=& \boldsymbol{a}_2^{cs} &=& (0, &a, &0)\\
\boldsymbol{a}_3^s &=& \boldsymbol{a}_3^{cs} &=& (0, &0, &a)
\end{matrix}\end{split}\]
Transformation matrix from standardized primitive cell to standardized conventional cell is
\[\begin{split}\boldsymbol{C}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\qquad
\boldsymbol{C}^{-1}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}\end{split}\]
K-path#
\(\mathrm{\Gamma-X-M-\Gamma-R-X\vert M-R}\).
Point |
\(\times\boldsymbol{b}_1^s\) |
\(\times\boldsymbol{b}_2^s\) |
\(\times\boldsymbol{b}_3^s\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{M}\) |
\(1/2\) |
\(1/2\) |
\(0\) |
\(\mathrm{R}\) |
\(1/2\) |
\(1/2\) |
\(1/2\) |
\(\mathrm{X}\) |
\(0\) |
\(1/2\) |
\(0\) |
Variations#
There are no variations for cubic lattice.
One example is predefined: cub
with \(a = \pi\).
Examples#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("CUB")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("cub_reciprocal.png")
# Interactive plot:
backend.show()
Primitive and Wigner-Seitz cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("CUB")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("cub_real.png")
# Interactive plot:
backend.show()
Cell standardization#
No standardization required.
\[\begin{split}\boldsymbol{S}
=
\boldsymbol{S}^{-1}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}\end{split}\]