Face-centred cubic (FCC)#

Pearson symbol: cF

Constructor: FCC()

It is defined by one parameters \(a\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& (0, &a/2, &a/2)\\ \boldsymbol{a}_2^s &=& (a/2, &0, &a/2)\\ \boldsymbol{a}_3^s &=& (a/2, &a/2, &0) \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^{cs} &=& (0, &a, &0)\\ \boldsymbol{a}_3^{cs} &=& (0, &0, &a) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} -0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-X-W-K-\Gamma-L-U-W-L-K\vert U-X}\)

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{K}\)

\(3/8\)

\(3/8\)

\(3/4\)

\(\mathrm{L}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{U}\)

\(5/8\)

\(1/4\)

\(5/8\)

\(\mathrm{W}\)

\(1/2\)

\(1/4\)

\(3/4\)

\(\mathrm{X}\)

\(1/2\)

\(0\)

\(1/2\)

Variations#

There are no variations for face-centered cubic lattice. One example is predefined: fcc with \(a = \pi\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("FCC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("fcc_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("FCC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("fcc_real.png")
# Interactive plot:
backend.show()

Cell standardization#

No standardization required.

\[\begin{split}\boldsymbol{S} = \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]