Hexagonal (HEX)#

Pearson symbol: hP

Constructor: HEX()

It is defined by two parameters \(a\) and \(c\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& \boldsymbol{a}_1^{cs} &=& (\frac{a}{2}, &\frac{-a\sqrt{3}}{2}, &0)\\ \boldsymbol{a}_2^s &=& \boldsymbol{a}_2^{cs} &=& (\frac{a}{2}, &\frac{a\sqrt{3}}{2}, &0)\\ \boldsymbol{a}_3^s &=& \boldsymbol{a}_3^{cs} &=& (0, &0, &c) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-M-K-\Gamma-A-L-H-A\vert L-M\vert K-H}\)

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{A}\)

\(0\)

\(0\)

\(1/2\)

\(\mathrm{H}\)

\(1/3\)

\(1/3\)

\(1/2\)

\(\mathrm{K}\)

\(1/3\)

\(1/3\)

\(0\)

\(\mathrm{L}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{M}\)

\(1/2\)

\(0\)

\(0\)

Variations#

There are no variations for hexagonal lattice. One example is predefined: hex with \(a = \pi\) and \(c = 2\pi\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("HEX")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("hex_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("HEX")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("hex_real.png")
# Interactive plot:
backend.show()

Cell standardization#

Since parameters \(a\) and \(c\) are not restricted (i.e. \(a = c\) is allowed), wulfric uses angles \(\alpha\), \(\beta\) and \(\gamma\) to determine the standard form of the cell. For the primitive cell in a standard form \(\alpha^s = \beta^s = 90^{\circ}\) and \(\gamma^s = 120^{\circ}\).

Matrix \(\boldsymbol{S}\) is constructed in two steps.

Step 1#

  • If \(\alpha = \beta = \dfrac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\beta = \gamma = \dfrac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha = \gamma = \dfrac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]

Step 2#

  • If \(\gamma^{(1)} = \dfrac{2}{3}\pi\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)})\]

    and

    \[\begin{split}\boldsymbol{S}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\gamma^{(1)} = \dfrac{\pi}{3}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2^{(1)}, -\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_3^{(1)})\]

    and

    \[\begin{split}\boldsymbol{S}_2 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_2^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]

Finally#

\[\boldsymbol{S} = \boldsymbol{S}_1 \boldsymbol{S}_2 \qquad \boldsymbol{S}^{-1} = \boldsymbol{S}_2^{-1} \boldsymbol{S}_1^{-1}\]