Monoclinic (MCL)#

Pearson symbol: mP

Constructor: MCL()

It is defined by four parameters \(a\), \(b\), \(c\) and \(\alpha\) with \(b \le c\), \(\alpha < 90^{\circ}\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^s &=& \boldsymbol{a}_2^{cs} &=& (0, &b, &0)\\ \boldsymbol{a}_3^s &=& \boldsymbol{a}_3^{cs} &=& (0, &c\cos\alpha, &c\sin\alpha) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-Y-H-C-E-M_1-A-X-H_1\vert M-D-Z\vert Y-D}\)

\[\begin{matrix} \eta = \dfrac{1 - b\cos\alpha / c}{2\sin^2\alpha} & \nu = \dfrac{1}{2} - \dfrac{\eta c\cos\alpha}{b} \end{matrix}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{A}\)

\(1/2\)

\(1/2\)

\(0\)

\(\mathrm{C}\)

\(0\)

\(1/2\)

\(1/2\)

\(\mathrm{D}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{D_1}\)

\(1/2\)

\(0\)

\(-1/2\)

\(\mathrm{E}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{H}\)

\(0\)

\(\eta\)

\(1-\nu\)

\(\mathrm{H_1}\)

\(0\)

\(1-\eta\)

\(\nu\)

\(\mathrm{H_2}\)

\(0\)

\(\eta\)

\(-\nu\)

\(\mathrm{M}\)

\(1/2\)

\(\eta\)

\(1-\nu\)

\(\mathrm{M_1}\)

\(1/2\)

\(1-\eta\)

\(\nu\)

\(\mathrm{M_2}\)

\(1/2\)

\(\eta\)

\(-\nu\)

\(\mathrm{X}\)

\(0\)

\(1/2\)

\(0\)

\(\mathrm{Y}\)

\(0\)

\(0\)

\(1/2\)

\(\mathrm{Y_1}\)

\(0\)

\(0\)

\(-1/2\)

\(\mathrm{Z}\)

\(1/2\)

\(0\)

\(0\)

Variations#

There are no variations for monoclinic lattice. One example is predefined: mcl with \(a = \pi\), \(b = 1.3 \pi\) \(c = 1.6 \pi\) and \(\alpha = 75^{\circ}\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("MCL")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("mcl_reciprocal.png")
# Interactive plot:
backend.show()

Primitive and Wigner-Seitz cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("MCL")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("mcl_real.png")
# Interactive plot:
backend.show()

Cell standardization#

First wulfric find two angles of \(90^{\circ}\), then conditions \(b \le c\) and \(\alpha < 90^{\circ}\) are checked directly. Matrix \(\boldsymbol{S}\) is constructed in three steps.

Step 1#

  • If \(\beta = \gamma = \frac{\pi}{2}\) and \(\alpha \ne \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\alpha = \gamma = \frac{\pi}{2}\) and \(\beta \ne \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha = \beta = \frac{\pi}{2}\) and \(\gamma \ne \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)}) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}_1^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]

Step 2#

  • If \(b^{(1)} \le c^{(1)}\), then

    \[(\boldsymbol{a}_1^{(2)}, \boldsymbol{a}_2^{(2)}, \boldsymbol{a}_3^{(2)}) = (\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_2^{(1)}, \boldsymbol{a}_3^{(1)})\]

    and

    \[\begin{split}\boldsymbol{S}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(b^{(1)} > c^{(1)}\) then

    \[(\boldsymbol{a}_1^{(2)}, \boldsymbol{a}_2^{(2)}, \boldsymbol{a}_3^{(2)}) = (-\boldsymbol{a}_1^{(1)}, \boldsymbol{a}_3^{(1)}, \boldsymbol{a}_2^{(1)})\]

    and

    \[\begin{split}\boldsymbol{S}_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}_2^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]

Step 3#

  • If \(\alpha^{(2)} < \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1^{(2)}, \boldsymbol{a}_2^{(2)}, \boldsymbol{a}_3^{(2)})\]

    and

    \[\begin{split}\boldsymbol{S}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\alpha^{(2)} > \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_1^{(2)}, -\boldsymbol{a}_2^{(2)}, \boldsymbol{a}_3^{(2)})\]

    and

    \[\begin{split}\boldsymbol{S}_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}_3^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]

Finally#

\[\boldsymbol{S} = \boldsymbol{S}_1 \boldsymbol{S}_2 \boldsymbol{S}_3 \qquad \boldsymbol{S}^{-1} = \boldsymbol{S}_3^{-1} \boldsymbol{S}_2^{-1} \boldsymbol{S}_1^{-1}\]

Note

All changes of the cell preserve handiness of the original one.

Edge cases#

If (\(\alpha = 60^{\circ}\) or \(\alpha = 120^{\circ}\)) and \(b = c\), then the lattice is Hexagonal (HEX).

If (\(\alpha = 30^{\circ}\) or \(\alpha = 150^{\circ}\) or \(\alpha = 45^{\circ}\) or \(\alpha = 145^{\circ}\)) and \(b = c\), then the lattice is Base-centred orthorhombic (ORCC).

If (\(\alpha = 60^{\circ}\) or \(\alpha = 120^{\circ}\)) and \(a \ne b = c/2\), then the lattice is Orthorhombic (ORC).

If \(a \ne b \ne c\) and \(\alpha = 90^{\circ}\), then the lattice is Orthorhombic (ORC).

If (\(\alpha = 60^{\circ}\) or \(\alpha = 120^{\circ}\)) and \(a = b = c/2\), then the lattice is Tetragonal (TET).

If (\(a = b \ne c\) or \(a = c \ne b\) or \(b = c \ne a\)) and \(\alpha = 90^{\circ}\), then the lattice is Tetragonal (TET).

If \(a = b = c\) and \(\alpha = 90^{\circ}\), then the lattice is Cubic (CUB).