Orthorhombic (ORC)#

Pearson symbol: oP

Constructor: ORC()

It is defined by three parameters \(a\), \(b\) and \(c\) with \(a < b < c\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^s &=& \boldsymbol{a}_2^{cs} &=& (0, &b, &0)\\ \boldsymbol{a}_3^s &=& \boldsymbol{a}_3^{cs} &=& (0, &0, &c) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-X-S-Y-\Gamma-Z-U-R-T-Z\vert Y-T\vert U-X\vert S-R}\)

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{R}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{S}\)

\(1/2\)

\(1/2\)

\(0\)

\(\mathrm{T}\)

\(0\)

\(1/2\)

\(1/2\)

\(\mathrm{U}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{X}\)

\(1/2\)

\(0\)

\(0\)

\(\mathrm{Y}\)

\(0\)

\(1/2\)

\(0\)

\(\mathrm{Z}\)

\(0\)

\(0\)

\(1/2\)

Variations#

There are no variations for orthorhombic lattice. One example is predefined: orc with \(a = \pi\), \(b = 1.5\pi\) and \(c = 2\pi\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orc_reciprocal.png")
# Interactive plot:
backend.show()

Primitive and Wigner-Seitz cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orc_real.png")
# Interactive plot:
backend.show()

Cell standardization#

Lengths of the lattice vectors have to satisfy \(\vert\boldsymbol{a}_1^s\vert < \vert\boldsymbol{a}_2^s\vert < \vert\boldsymbol{a}_3^s\vert\) for the primitive cell in the standard form.

  • If \(\vert \boldsymbol{a}_3\vert > \vert \boldsymbol{a}_2\vert > \vert \boldsymbol{a}_1\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_3\vert > \vert \boldsymbol{a}_1\vert > \vert \boldsymbol{a}_2\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_2, -\boldsymbol{a}_1, -\boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_2\vert > \vert \boldsymbol{a}_3\vert > \vert \boldsymbol{a}_1\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_1, -\boldsymbol{a}_3, -\boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_2\vert > \vert \boldsymbol{a}_1\vert > \vert \boldsymbol{a}_3\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_1\vert > \vert \boldsymbol{a}_3\vert > \vert \boldsymbol{a}_2\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_1\vert > \vert \boldsymbol{a}_2\vert > \vert \boldsymbol{a}_3\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_3, -\boldsymbol{a}_2, -\boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}\end{split}\]

Note

All six changes of the cell preserve the handiness of the original one.

Edge cases#

If \(a = b \ne c\) or \(a = c \ne b\) or \(b = c \ne a\), then the lattice is Tetragonal (TET).

If \(a = b = c\), then the lattice is Cubic (CUB).