Base-centred orthorhombic (ORCC)#

Pearson symbol: oS

Constructor: ORCC()

It is defined by three parameters \(a\), \(b\) and \(c\) with \(a < b\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& (a/2, &-b/2, &0)\\ \boldsymbol{a}_2^s &=& (a/2, &b/2, &0)\\ \boldsymbol{a}_3^s &=& (0, &0, &c) \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^{cs} &=& (0, &b, &0)\\ \boldsymbol{a}_3^{cs} &=& (0, &0, &c) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} 0.5 & 0.5 & 0 \\ -0.5 & 0.5 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-X-S-R-A-Z-\Gamma-Y-X_1-A_1-T-Y\vert Z-T}\)

\[\zeta = \dfrac{1 + a^2/b^2}{4}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{A}\)

\(\zeta\)

\(\zeta\)

\(1/2\)

\(\mathrm{A_1}\)

\(-\zeta\)

\(1-\zeta\)

\(1/2\)

\(\mathrm{R}\)

\(0\)

\(1/2\)

\(1/2\)

\(\mathrm{S}\)

\(0\)

\(1/2\)

\(0\)

\(\mathrm{T}\)

\(-1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{X}\)

\(\zeta\)

\(\zeta\)

\(0\)

\(\mathrm{X_1}\)

\(-\zeta\)

\(1-\zeta\)

\(0\)

\(\mathrm{Y}\)

\(-1/2\)

\(1/2\)

\(0\)

\(\mathrm{Z}\)

\(0\)

\(0\)

\(1/2\)

Variations#

There are no variations for base-centered orthorombic. One example is predefined: orcc with \(a = \pi\), \(b = 1.3\pi\) and \(c = 1.7\pi\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orcc_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCC")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orcc_real.png")
# Interactive plot:
backend.show()

Cell standardization#

Length of third vector of the primitive cell has to be different from the lengths of the first two vectors of the primitive cell. Together with the \(a < b\) we arrive at the following condition of the angles of the primitive cell in a standard form: \(\alpha^s = \beta^s = 90^{\circ}\) and \(\gamma^s > 90^{\circ}\). Wulfric uses angles of the primitive cell for standardization.

  • If \(\alpha = \beta = \frac{\pi}{2}\) and \(\gamma > \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\alpha = \beta = \frac{\pi}{2}\) and \(\gamma < \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, -\boldsymbol{a}_1, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\beta = \gamma = \frac{\pi}{2}\) and \(\alpha > \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\beta = \gamma = \frac{\pi}{2}\) and \(\alpha < \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, -\boldsymbol{a}_2, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha = \gamma = \frac{\pi}{2}\) and \(\beta > \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha = \gamma = \frac{\pi}{2}\) and \(\beta < \frac{\pi}{2}\) then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, -\boldsymbol{a}_3, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]

Note

All six changes of the cell preserve handiness of the original one.

Edge cases#

If \(a = b\), then the lattice is Tetragonal (TET).

If \(a = b = \sqrt{2} c\), then the lattice is Cubic (CUB).