Face-centred orthorhombic (ORCF)#

Pearson symbol: oF

Constructor: ORCF()

It is defined by three parameters \(a\), \(b\) and \(c\) with \(a < b < c\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& (0, &b/2, &c/2)\\ \boldsymbol{a}_2^s &=& (a/2, &0, &c/2)\\ \boldsymbol{a}_3^s &=& (a/2, &b/2, &0) \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^{cs} &=& (0, &b, &0)\\ \boldsymbol{a}_3^{cs} &=& (0, &0, &c) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} -0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ \end{pmatrix}\end{split}\]

K-path#

ORCF1#

\(\mathrm{\Gamma-Y-T-Z-\Gamma-X-A_1-Y\vert T-X_1\vert X-A-Z\vert L-\Gamma}\)

\[\begin{matrix} \zeta = \dfrac{1 + a^2/b^2 - a^2/c^2}{4} & \eta = \dfrac{1 + a^2/b^2 + a^2/c^2}{4} \end{matrix}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{A}\)

\(1/2\)

\(1/2 + \zeta\)

\(\zeta\)

\(\mathrm{A_1}\)

\(1/2\)

\(1/2 - \zeta\)

\(1-\zeta\)

\(\mathrm{L}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{T}\)

\(1\)

\(1/2\)

\(1/2\)

\(\mathrm{X}\)

\(0\)

\(\eta\)

\(\eta\)

\(\mathrm{X_1}\)

\(1\)

\(1-\eta\)

\(1-\eta\)

\(\mathrm{Y}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{Z}\)

\(1/2\)

\(1/2\)

\(0\)

ORCF2#

\(\mathrm{\Gamma-Y-C-D-X-\Gamma-Z-D_1-H-C\vert C_1-Z\vert X-H_1\vert H-Y\vert L-\Gamma}\)

\[\begin{matrix} \eta = \dfrac{1 + a^2/b^2 - a^2/c^2}{4} & \delta = \dfrac{1 + b^2/a^2 - b^2/c^2}{4} & \phi = \dfrac{1 + c^2/b^2 - c^2/a^2}{4} \end{matrix}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{C}\)

\(1/2\)

\(1/2 - \eta\)

\(1 - \eta\)

\(\mathrm{C_1}\)

\(1/2\)

\(1/2 + \eta\)

\(\eta\)

\(\mathrm{D}\)

\(1/2-\delta\)

\(1/2\)

\(1 - \delta\)

\(\mathrm{D_1}\)

\(1/2+\delta\)

\(1/2\)

\(\delta\)

\(\mathrm{L}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{H}\)

\(1 - \phi\)

\(1/2 - \phi\)

\(1/2\)

\(\mathrm{H_1}\)

\(\phi\)

\(1/2 + \phi\)

\(1/2\)

\(\mathrm{X}\)

\(0\)

\(1/2\)

\(1/2\)

\(\mathrm{Y}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{Z}\)

\(1/2\)

\(1/2\)

\(0\)

ORCF3#

\(\mathrm{\Gamma-Y-T-Z-\Gamma-X-A_1-Y\vert X-A-Z\vert L-\Gamma}\)

\[\begin{matrix} \zeta = \dfrac{1 + a^2/b^2 - a^2/c^2}{4} & \eta = \dfrac{1 + a^2/b^2 + a^2/c^2}{4} \end{matrix}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{A}\)

\(1/2\)

\(1/2 + \zeta\)

\(\zeta\)

\(\mathrm{A_1}\)

\(1/2\)

\(1/2 - \zeta\)

\(1-\zeta\)

\(\mathrm{L}\)

\(1/2\)

\(1/2\)

\(1/2\)

\(\mathrm{T}\)

\(1\)

\(1/2\)

\(1/2\)

\(\mathrm{X}\)

\(0\)

\(\eta\)

\(\eta\)

\(\mathrm{X_1}\)

\(1\)

\(1-\eta\)

\(1-\eta\)

\(\mathrm{Y}\)

\(1/2\)

\(0\)

\(1/2\)

\(\mathrm{Z}\)

\(1/2\)

\(1/2\)

\(0\)

Variations#

There are three variations of face-centered orthorombic lattice.

For the examples of variations \(a\) is set to \(1\); \(b\) and \(c\) fulfil the conditions:

  • \(b = \dfrac{c}{\sqrt{c^2 - 1}}\)

  • \(c > \sqrt{2}\)

First condition defines in ORCF3 lattice and ensures ordering of lattice parameters \(b > a\). Ordering \(c > b\) is forced by second condition.

For ORCF1 and ORCF2 lattices \(a < 1\) and \(a > 1\) is chosen. While \(b\) and \(c\) are the same as for ORCF3 lattice.

At the end all three parameters are multiplied by \(\pi\).

ORCF1#

\(\dfrac{1}{a^2} > \dfrac{1}{b^2} + \dfrac{1}{c^2}\).

Predefined example: orcf1 with \(a = 0.7\pi\), \(b = 5\pi/4\) and \(c = 5\pi/3\).

ORCF2#

\(\dfrac{1}{a^2} < \dfrac{1}{b^2} + \dfrac{1}{c^2}\).

Predefined example: orcf2 with \(a = 1.2\pi\), \(b = 5\pi/4\) and \(c = 5\pi/3\).

ORCF3#

\(\dfrac{1}{a^2} = \dfrac{1}{b^2} + \dfrac{1}{c^2}\).

Predefined example: orcf3 with \(a = \pi\), \(b = 5\pi/4\) and \(c = 5\pi/3\).

Examples#

ORCF1#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orcf1_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orcf1_real.png")
# Interactive plot:
backend.show()

ORCF2#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orcf2_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orcf2_real.png")
# Interactive plot:
backend.show()

ORCF3#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF3")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orcf3_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCF3")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orcf3_real.png")
# Interactive plot:
backend.show()

Cell standardization#

Condition \(a < b < c\) implies \(\vert\boldsymbol{a}_1^s\vert > \vert\boldsymbol{a}_2^s\vert > \vert\boldsymbol{a}_3^s\vert\) for the lattice vectors of the primitive cell in a standard form. Therefore, wulfric uses the primitive lattice vectors for the standardization:

  • If \(\vert \boldsymbol{a}_3\vert < \vert \boldsymbol{a}_2\vert < \vert \boldsymbol{a}_1\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_3\vert < \vert \boldsymbol{a}_1\vert < \vert \boldsymbol{a}_2\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_2, -\boldsymbol{a}_1, -\boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_2\vert < \vert \boldsymbol{a}_3\vert < \vert \boldsymbol{a}_1\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_1, -\boldsymbol{a}_3, -\boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_2\vert < \vert \boldsymbol{a}_1\vert < \vert \boldsymbol{a}_3\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_1\vert < \vert \boldsymbol{a}_3\vert < \vert \boldsymbol{a}_2\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\vert \boldsymbol{a}_1\vert < \vert \boldsymbol{a}_2\vert < \vert \boldsymbol{a}_3\vert\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_3, -\boldsymbol{a}_2, -\boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}\end{split}\]

Note

All six changes of the cell preserve handiness of the original one.

Edge cases#

If \(a = b \ne c\) or \(a = c \ne b\) or \(b = c \ne a\), then the lattice is Body-centred tetragonal (BCT).

If \(a = b = c\), then the lattice is Face-centred cubic (FCC).