Body-centred orthorhombic (ORCI)#

Pearson symbol: oI

Constructor: ORCI()

It is defined by three parameters \(a\), \(b\) and \(c\) with \(a < b < c\). Standardized primitive and conventional cells in the default orientation are

\[\begin{split}\begin{matrix} \boldsymbol{a}_1^s &=& (-a/2, &b/2, &c/2)\\ \boldsymbol{a}_2^s &=& (a/2, &-b/2, &c/2)\\ \boldsymbol{a}_3^s &=& (a/2, &b/2, &-c/2) \end{matrix}\end{split}\]
\[\begin{split}\begin{matrix} \boldsymbol{a}_1^{cs} &=& (a, &0, &0)\\ \boldsymbol{a}_2^{cs} &=& (0, &b, &0)\\ \boldsymbol{a}_3^{cs} &=& (0, &0, &c) \end{matrix}\end{split}\]

Transformation matrix from standardized primitive cell to standardized conventional cell is

\[\begin{split}\boldsymbol{C} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{pmatrix} \qquad \boldsymbol{C}^{-1} = \begin{pmatrix} -0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 \\ \end{pmatrix}\end{split}\]

K-path#

\(\mathrm{\Gamma-X-L-T-W-R-X_1-Z-\Gamma-Y-S-W\vert L_1-Y\vert Y_1-Z}\)

\[\begin{matrix} \zeta = \dfrac{1 + a^2/c^2}{4} & \eta = \dfrac{1 + b^2/c^2}{4} & \delta = \dfrac{b^2 - a^2}{4c^2} & \mu = \dfrac{a^2 + b^2}{4c^2} \end{matrix}\]

Point

\(\times\boldsymbol{b}_1^s\)

\(\times\boldsymbol{b}_2^s\)

\(\times\boldsymbol{b}_3^s\)

\(\mathrm{\Gamma}\)

\(0\)

\(0\)

\(0\)

\(\mathrm{L}\)

\(-\mu\)

\(\mu\)

\(1/2 - \delta\)

\(\mathrm{L_1}\)

\(\mu\)

\(-\mu\)

\(1/2 + \delta\)

\(\mathrm{L_2}\)

\(1/2-\delta\)

\(1/2+\delta\)

\(-\mu\)

\(\mathrm{R}\)

\(0\)

\(1/2\)

\(0\)

\(\mathrm{S}\)

\(1/2\)

\(0\)

\(0\)

\(\mathrm{T}\)

\(0\)

\(0\)

\(1/2\)

\(\mathrm{W}\)

\(1/4\)

\(1/4\)

\(1/4\)

\(\mathrm{X}\)

\(-\zeta\)

\(\zeta\)

\(\zeta\)

\(\mathrm{X_1}\)

\(\zeta\)

\(1-\zeta\)

\(-\zeta\)

\(\mathrm{Y}\)

\(\eta\)

\(-\eta\)

\(\eta\)

\(\mathrm{Y_1}\)

\(1-\eta\)

\(\eta\)

\(-\eta\)

\(\mathrm{Z}\)

\(1/2\)

\(1/2\)

\(-1/2\)

Variations#

There are no variations for body-centered orthorombic. One example is predefined: orci with \(a = \pi\), \(b = 1.3\pi\) and \(c = 1.7\pi\).

Examples#

Brillouin zone and default kpath#

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCI")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("orci_reciprocal.png")
# Interactive plot:
backend.show()

Primitive, Wigner-Seitz and conventional cells#

Click on the legend to hide a cell.

import wulfric as wulf

cell = wulf.cell.get_cell_example("ORCI")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="conventional", label="conventional", color="blue")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("orci_real.png")
# Interactive plot:
backend.show()

Cell standardization#

Condition \(a < b < c\) implies \(\gamma^s < \beta^s < \alpha^s\) for the primitive cell in a standard form. Therefore, wulfric uses angles of the primitive cell for standardization.

  • If \(\gamma < \beta < \alpha\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]
  • If \(\gamma < \alpha < \beta\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_2, -\boldsymbol{a}_1, -\boldsymbol{a}_3)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}\end{split}\]
  • If \(\beta < \gamma < \alpha\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_1, -\boldsymbol{a}_3, -\boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}\end{split}\]
  • If \(\beta < \alpha < \gamma\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha < \gamma < \beta\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]
  • If \(\alpha < \beta < \gamma\), then

    \[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (-\boldsymbol{a}_3, -\boldsymbol{a}_2, -\boldsymbol{a}_1)\]

    and

    \[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}\end{split}\]

Note

All six changes of the cell preserve handiness of the original one.

Edge cases#

If \(a = b \ne c\) or \(a = c \ne b\) or \(b = c \ne a\), then the lattice is Body-centred tetragonal (BCT).

If \(a = b = c\), then the lattice is Body-centered cubic (BCC).