Rhombohedral (RHL)#
Pearson symbol: hR
Constructor: RHL()
It is defined by two parameters \(a\) and \(\alpha\). Standardized primitive and conventional cells in the default orientation are
Transformation matrix from standardized primitive cell to standardized conventional cell is
K-path#
RHL1#
\(\mathrm{\Gamma-L-B_1\vert B-Z-\Gamma-X\vert Q-F-P_1-Z\vert L-P}\)
Point |
\(\times\boldsymbol{b}_1^s\) |
\(\times\boldsymbol{b}_2^s\) |
\(\times\boldsymbol{b}_3^s\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{B}\) |
\(\eta\) |
\(1/2\) |
\(1 - \eta\) |
\(\mathrm{B_1}\) |
\(1/2\) |
\(1-\eta\) |
\(\eta - 1\) |
\(\mathrm{F}\) |
\(1/2\) |
\(1/2\) |
\(0\) |
\(\mathrm{L}\) |
\(1/2\) |
\(0\) |
\(0\) |
\(\mathrm{L_1}\) |
\(0\) |
\(0\) |
\(-1/2\) |
\(\mathrm{P}\) |
\(\eta\) |
\(\nu\) |
\(\nu\) |
\(\mathrm{P_1}\) |
\(1-\nu\) |
\(1-\nu\) |
\(1-\eta\) |
\(\mathrm{P_2}\) |
\(\nu\) |
\(\nu\) |
\(\eta - 1\) |
\(\mathrm{Q}\) |
\(1-\nu\) |
\(\nu\) |
\(0\) |
\(\mathrm{X}\) |
\(\nu\) |
\(0\) |
\(-\nu\) |
\(\mathrm{Z}\) |
\(1/2\) |
\(1/2\) |
\(1/2\) |
RHL2#
\(\mathrm{\Gamma-P-Z-Q-\Gamma-F-P_1-Q_1-L-Z}\)
Point |
\(\times\boldsymbol{b}_1\) |
\(\times\boldsymbol{b}_2\) |
\(\times\boldsymbol{b}_3\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{F}\) |
\(1/2\) |
\(-1/2\) |
\(0\) |
\(\mathrm{L}\) |
\(1/2\) |
\(0\) |
\(0\) |
\(\mathrm{P}\) |
\(1-\nu\) |
\(-\nu\) |
\(1-\nu\) |
\(\mathrm{P_1}\) |
\(\nu\) |
\(\nu-1\) |
\(\nu-1\) |
\(\mathrm{Q}\) |
\(\eta\) |
\(\eta\) |
\(\eta\) |
\(\mathrm{Q_1}\) |
\(1-\eta\) |
\(-\eta\) |
\(-\eta\) |
\(\mathrm{Z}\) |
\(1/2\) |
\(-1/2\) |
\(1/2\) |
Variations#
There are two variations for rhombohedral lattice.
RHL1#
\(\alpha < 90^{\circ}\).
Predefined example: rhl1
with \(a = \pi\) and \(\alpha = 70^{\circ}\)
RHL2#
\(\alpha > 90^{\circ}\).
Predefined example: rhl2
with \(a = \pi\) and \(\alpha = 110^{\circ}\)
Examples#
RHL1#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("RHL1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("rhl1_reciprocal.png")
# Interactive plot:
backend.show()
Primitive and Wigner-Seitz cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("RHL1")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("rhl1_real.png")
# Interactive plot:
backend.show()
RHL2#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("RHL2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("rhl2_reciprocal.png")
# Interactive plot:
backend.show()
Primitive and Wigner-Seitz cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("RHL2")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("rhl2_real.png")
# Interactive plot:
backend.show()
Cell standardization#
No standardization required.
Edge cases#
In rhombohedral lattice \(a = b = c\) and \(\alpha = \beta = \gamma\), thus three edge cases exist:
If \(\alpha = 60^{\circ}\), then the lattice is Face-centred cubic (FCC)
If \(\alpha \approx 109.47122063^{\circ}\) (\(\cos(\alpha) = -1/3\)), then the lattice is Body-centered cubic (BCC).
If \(\alpha = 90^{\circ}\), then the lattice is Cubic (CUB).