Tetragonal (TET)#
Pearson symbol: tP
Constructor: TET()
It is defined by two parameters \(a\) and \(c\) with \(a \ne c\). Standardized primitive and conventional cells in the default orientation are
Transformation matrix from standardized primitive cell to standardized conventional cell is
K-path#
\(\mathrm{\Gamma-X-M-\Gamma-Z-R-A-Z\vert X-R\vert M-A}\)
Point |
\(\times\boldsymbol{b}_1^s\) |
\(\times\boldsymbol{b}_2^s\) |
\(\times\boldsymbol{b}_3^s\) |
---|---|---|---|
\(\mathrm{\Gamma}\) |
\(0\) |
\(0\) |
\(0\) |
\(\mathrm{A}\) |
\(1/2\) |
\(1/2\) |
\(1/2\) |
\(\mathrm{M}\) |
\(1/2\) |
\(1/2\) |
\(0\) |
\(\mathrm{R}\) |
\(0\) |
\(1/2\) |
\(1/2\) |
\(\mathrm{X}\) |
\(0\) |
\(1/2\) |
\(0\) |
\(\mathrm{Z}\) |
\(0\) |
\(0\) |
\(1/2\) |
Variations#
There are no variations for tetragonal lattice.
One example is predefined: tet
with \(a = \pi\) and \(c = 1.5\pi\)
Examples#
Brillouin zone and default kpath#
import wulfric as wulf
cell = wulf.cell.get_cell_example("TET")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="brillouin-kpath")
# Save an image:
backend.save("tet_reciprocal.png")
# Interactive plot:
backend.show()
Primitive and Wigner-Seitz cells#
Click on the legend to hide a cell.
import wulfric as wulf
cell = wulf.cell.get_cell_example("TET")
backend = wulf.visualization.PlotlyBackend()
backend.plot(cell, kind="primitive", label="primitive", color="black")
backend.plot(cell, kind="wigner-seitz", label="wigner-seitz", color="green")
# Save an image:
backend.save("tet_real.png")
# Interactive plot:
backend.show()
Cell standardization#
Length of third lattice vector has to be different from the first two. If this condition is not satisfied, then the lattice is transformed to the standard form:
If \(\vert\boldsymbol{a}_1\vert = \vert\boldsymbol{a}_2\vert \ne \vert\boldsymbol{a}_3\vert\), then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]If \(\vert\boldsymbol{a}_2\vert = \vert\boldsymbol{a}_3\vert \ne \vert\boldsymbol{a}_1\vert\), then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_1)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]If \(\vert\boldsymbol{a}_1\vert = \vert\boldsymbol{a}_3\vert \ne \vert\boldsymbol{a}_2\vert\), then
\[(\boldsymbol{a}_1^s, \boldsymbol{a}_2^s, \boldsymbol{a}_3^s) = (\boldsymbol{a}_3, \boldsymbol{a}_1, \boldsymbol{a}_2)\]and
\[\begin{split}\boldsymbol{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{S}^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]
Edge cases#
If \(a = c\), then the lattice is Cubic (CUB).